If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1+3x^2-5x=0
a = 3; b = -5; c = +1;
Δ = b2-4ac
Δ = -52-4·3·1
Δ = 13
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{13}}{2*3}=\frac{5-\sqrt{13}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{13}}{2*3}=\frac{5+\sqrt{13}}{6} $
| 0=100-4n^2 | | x^2-28=5x | | 1-6.6r+6.8=21.66 | | (3x+7/5)+(5x-6/8)=8 | | 3x-2x+22=x+17 | | x+19x=-90 | | 12m=15m-3-6 | | 3x+60=160 | | (2x+1÷3)+16=3x | | 4x+6x-28=0 | | 37=-8x+3(x+4) | | 2+15x^2-11x=0 | | 4^x-6^(2^x)-16=0 | | p=0.1428 | | -2x-13=0 | | 2+2x^2-5x=0 | | X+x+.89+x.89+.51=11.35 | | p=0.003 | | 1/2+7y=-1/2 | | {3x+1}{3}-{x+7}{24}=133x+1 −24x+7 =1 | | 25.49=5g+3.59 | | X+x+.89+x+.89+.51=11.35 | | X+x+.89+.x+.89+.51=11.35 | | (6-z)(3z+4)=0 | | X+x+.89+.x+89+.51=11.35 | | X+x+.89+.89+.51=11.35 | | -8(-8x-6)=-6x | | 8(1+5)+5=13+5n | | (a)-2a/5=3 | | 2(n+7)=-36 | | 5v+7=3(v+9) | | 10(v+4)-2v=2(4v+2)-9 |